
Comparative Evaluation of Free/Open Source
Software to Develop Virtual Reality Systems

Eduardo Islas Pérez1, Ivonne Ávila Gutierrez1, Ilse Leal Aulenbacher1 and
Benjamin Zayas Pérez1

1 Instituto de Investigaciones Eléctricas, Av. Reforma 113 Col Reforma,
Cuernavaca, Morelos, México, 62490

{eislas, ivon_ag, ileal, zayas}@iie.org.mx

Abstract. In this paper we describe an evaluation methodology for virtual real-
ity (VR) free/open source software tools. A Multi Criteria Decision Making
(MCDM) methodology based on a criteria set and weight assignment was ap-
plied. The analysis and evaluation aimed to help decision makers to select the
most appropriate software tools to develop VR applications. The selected tools
were used to develop a virtual reality system to teach concepts related to gen-
eration, transmission and distribution of electricity from a power plant to con-
sumption centres.

1 Introduction

The success of a virtual reality project or system relies on many factors. One of the
most important aspects is good planning, in which software resources must be consid-
ered and managed. An adequate selection of VR software tools may determine the
success or failure of a project.

In order to develop a VR system with a high degree of interaction, immersion and
realism, we need different types of free/open source and commercial software tools.
Therefore, software analysis and evaluation must be carried out to identify the most
appropriate tools that can be integrated to support the development process. The re-
sults of these activities should reflect in the selection of software with the right fea-
tures according to the system requirements. These results can improve the planning
and developing of a project.

The system described in this paper explores the use of VR as a training tool to
help learners (utility workers and students) to become familiar with the equipment
and facilities of a power system: from electricity generation in a power plant, to the
distribution lines for domestic supply, going through the transmission towers and the
substations. This application provides the users with different levels of immersive, in-
teractive and three-dimensional experience allowing them to explore the power sys-
tem freely in order to know the elements and equipment involved with power genera-
tion, transmission and distribution.

A. Gelbukh, S. Suárez, H. Calvo (Eds.)
Advances in Computer Science and Engineering
Research in Copmuting Science 29, 2007, pp. 268-281

Received 18/09/07
Accepted 19/10/07

Final version 24/10/07

2 Free/Open Source Software

Besides the obvious low cost of Free/Open Source Software (FOSS), there are many
other reasons why public/private organizations are adopting this kind of technology
[1]. The most important are: security, reliability/stability, open standards / vendor in-
dependence, reduced reliance on imports, developing local software and capacity.

− Security. Development method, program architecture and target market can
greatly affect the security of a system and consequently make it easier or more dif-
ficult to violate. There are some examples where FOSS systems are superior to
proprietary systems [2].

Three reasons are often cited for FOSS’s better security record:

• Availability of source code: Availability has made it easier for developers and
users to discover and fix vulnerabilities as soon as they are found.

• Security focus, instead of user-friendliness: It is more focused on robustness
and functionality, rather than ease of use.

• Roots: These systems are mostly based on the multi-user, network-ready Unix
model. Because of this, they come with a strong security and permission struc-
ture.

− Reliability/Stability. FOSS is well known for their stability and reliability. For ex-
ample, Vaughan and Steven conducted a reliability test between Red Hat Linux,
Caldera Systems OpenLinux and Microsoft’s Windows NT Server 4.0. The result
was that NT crashed once every six weeks but none of the FOSS systems crashed
at all during a period of 10 months [3].

In other example Prof. Miller from Wisconsin University has been measuring
reliability by feeding programs random characters and determining which ones re-
sisted crashing and freeze-ups (Fuzz testing). This approach is unlikely to find sub-
tle failures, the study found that their approach still manages to find many errors in
production software and is a useful tool for finding software flaws. What is more,
this approach is extremely fair and can be broadly applied to any program, making
it possible to compare different programs fairly [4].

− Open standards and vendor independence. Open standards give users flexibility
and the freedom to change between different software packages, platforms and
vendors. Proprietary, secret standards lock users into using software only from one
vendor and leave them at the mercy of the vendor at a later stage, when all their
data is in the vendor’s proprietary format and the costs of converting them to an
open standard is prohibitively high.

− Reduced reliance on imports. A major incentive for developing countries to
adopt FOSS systems is the enormous cost of proprietary software licenses. Because
virtually all proprietary software in developing countries is imported, their pur-
chase consumes precious hard currency and foreign reserves. These reserves could
be better spent on other development goals in developing countries.

Comparative Evaluation of Free/Open Source Software to Develop Virtual Reality... 269

− Developing local software capacity. It has been noted that there is a positive cor-
relation between the growth of a FOSS developer base and the innovative capaci-
ties (software) of an economy. There are three reasons for this:

• Low barriers to entry: FOSS, which encourages free modification and redis-
tribution, is easy to obtain, use and learn from.

• FOSS as an excellent training system: The open and collaborative nature of
FOSS allows a student to examine and experiment with software concepts at
virtually no direct cost to society. Likewise, a student can tap into the global
collaborative FOSS development network that includes massive archives of
technical information and interactive discussion tools.

• FOSS as a source of standards: FOSS often becomes a de facto standard by
virtue of its dominance in a particular sector of an industry. By being involved
in setting the standards in a particular FOSS application, a region can ensure
that the standard produced takes into account regional needs and cultural con-
siderations.

FOSS has significant market share in many markets, is often the most reliable
software, and in many cases has the best performance. FOSS scales, both in problem
size and project size and often it has far better security, perhaps due to the possibility
of worldwide review. Total cost of ownership for FOSS is often far less than proprie-
tary software, especially as the number of platforms increases. These statements are
not merely opinions; these effects can be shown quantitatively, using a wide variety
of measures. This does not even consider other issues that are hard to measure, such
as freedom from control by a single source, freedom from licensing management
(with its accompanying risk of audit and litigation) [5].

In the case of our application, we need to accomplish some of these features. For
instance, security is needed for systems that run over the Internet or a public network;
in fact, we aim to develop this kind of applications in the near future. In the reliabil-
ity/stability context, not only the mentioned aspects are relevant but also the stability
of developers or vendors. For example, the well-known company Sense 8 is no longer
available in the VR field since a couple of years ago, leaving some customers without
any kind of support for their VR systems or projects.

3 VR Software Description

We have identified four types of software tools commonly used to develop VR appli-
cations, which are: toolkits and graphic environments for programming and develop-
ing VR applications, tools for 3D modeling, tools for developing mathematical mod-
els and tools for 3D visualization. Figure 1 depicts this type of software tools. The
analysis and evaluation described in this paper are mainly based on this classification.

270 Eduardo Islas Pérez, Ivonne Ávila Gutierrez, Ilse Leal Aulenbacher, et al.

Tools for
developing 3D
models (wires,

towers,
buildings, etc.)

Tools for
developing 3D
models (wires,

towers,
buildings, etc.)

Toolkits and graphics
environments for
programming and

developing VR applications
(integration of 3D models,

mathematical models,
animations, etc.)

Toolkits and graphics
environments for
programming and

developing VR applications
(integration of 3D models,

mathematical models,
animations, etc.)

Tools for developing
mathematical

models (gravity,
magnetic fields,

voltage, etc.)

Tools for developing
mathematical

models (gravity,
magnetic fields,

voltage, etc.)

Tools for visualizing
3D environments

Tools for visualizing
3D environments

Fig. 1. Types of software tools involved in a VR system development

• Toolkits and graphic environments for programming and developing VR ap-
plications. Although there are many kinds of toolkits to develop three-
dimensional environments or virtual worlds, we have only considered two types of
tools:

− Graphic environments to develop VR applications. These tools provide a
graphical environment to develop applications. Basic nodes or primitives are
used to build more complex virtual worlds. In addition to the graphical inter-
face, this type of tools also offer some built-in basic animations and object be-
haviors, which make the development of applications easier than with develop-
ment toolkits. In particular, a good background in programming is not needed to
develop applications. This is one of the biggest advantages of these environ-
ments. However, the limited functionality they provide precludes the develop-
ment of complex applications.

− Toolkits for programming VR applications. A toolkit is an extensible library
of object-oriented functions designed specifically for developing VR applica-
tions. Toolkits are in a middle stage between low-level graphic language, such as
Open GL [6] and graphic environments such as Open Inventor [7]. These tools
afford functionality through a rich set of function libraries such as: connectivity
with input/output hardware, behaviors, animations, lighting techniques, etc.
Complementary functions can also be programmed by developers using high-
level programming languages such as C++ or Java.

• Tools for 3D modeling. Three-dimensional models can be created and edited with
this type of tool. The usage of a diversity of techniques, objects, scenes and envi-
ronments can be replicated. Some of these tools allow developing simple object an-
imations, object behaviours and special effects through scripting. These tools are
important in the sense that they create the visual part of a VR application.

Comparative Evaluation of Free/Open Source Software to Develop Virtual Reality... 271

• Tools for developing mathematical models. With this kind of tool, object behav-
iors can be modeled in a virtual environment. Simulations are based on mathemati-
cal models of behaviors such as gravity, inertia, weight, acceleration, etc. Object
behaviour makes the representation of physical settings more realistic.

• Tools for 3D visualization. These types of tools are used for model visualization,
interacting with virtual objects in a scene and exploring a virtual environment.
These tools are divided into two categories: general-purpose or developed for a
specific application. Usually, toolkits or other virtual reality software offer viewers
for their particular applications. However, those general-purpose viewers are lim-
ited in functionality. Viewers with extended functionality can be built with the
tools aforementioned in this section. These viewers can be distributed to final users
without buying additional development licenses for toolkits and graphic environ-
ments.

4 VR Software Evaluation

The MCDM methodology used in this project is based on some concepts from the
methodology described in [8] which was applied in the evaluation of VR hardware
and software tools [9] and appraisal of Learning Management Systems (LMSs) [10].
It is worth pointing out that at some degree it is a general-purpose methodology, in
the sense that depending on the kind of items to be evaluated, a set of matching crite-
ria (or parameters) must be defined. We applied this methodology to evaluate differ-
ent VR software tools. However, due to lack of space, only the evaluation details of
toolkits and graphic environments for developing VR applications are presented in
this paper. Results for other software tools are only shown.

a) Identification and selection of evaluation parameters. The list of parameters

considered in the toolkits evaluation and graphic environments is shown in Table
1:

Table 1. Evaluation parameters for toolkits and graphic environments

Parameter Parameter
1. Drivers to ease hardware integration 2. Use of communication networks
3. Classes or functions library 4. Multiplatform and portability
5. Import and export 3D models and scenes 6. Import and export animations
7. Geometries library 8. Optimization
9. Audio 10. Realism level
11. Animation 12. Rendering and visualization
13. Use of databases 14. Open source and versions
15. Availability of demos 16. Management aspects
17. Company Profiles

b) Value assignment for each parameter. Table 2 shows in detail the features that

are taken into consideration when grading and scaling the Drivers to ease hard-
ware integration parameter. Details on the other parameters have been intention-
ally omitted due the lack of space.

272 Eduardo Islas Pérez, Ivonne Ávila Gutierrez, Ilse Leal Aulenbacher, et al.

Table 2. Grading for drivers to ease hardware integration

Features
Drivers to ease the use of:
1. Video equipment (HMDs, eyeglasses, CAVEs, etc.)
2. Audio equipment (headphones, speakers).
3. Haptic devices (gloves, cybergrasp, etc.)
4. Equipment for movement (input devices)(mice, josticks, etc.)
5. Positional gadgets (trackers, nestbirds, etc.)

c) Weight assignment for all of the parameters. Weights assigned to each pa-

rameter were: 1, 1.5 and 2 where 1 means an optional parameter, 1.5 a parameter
to improve immersion, interaction or development and 2 means a very important
parameter.

d) Identification and selection of tools. Because of the great number of software

tools available nowadays and based on the most important attributes, we made a
pre-selection of software tools. The final list of the evaluated software tools is
shown in Table 3.

Table 3. Identification and selection of software tools

Software Tools Company Price (USD)
MetaVR [11] MetaVR, Inc. 10,500.00
IRRLicht [12] IRRLicht FOSS
Cult3D [13] Cycore 7,700.00
Torque [14] GarageGames, Inc. 395.00
Open Inventor [7] Mercury Inc. 5,000.00
Horizon Scene Graph [15] DigiUtopikA Lda. Not available on line
OpenGL Performer [16] Silicon Graphics Not available

on line
Panda 3D [17] Disney and Carnegie

Mellon University
FOSS

Java 3D [18] Sun Developer Net-
work

FOSS

OpenSceneGraph [19] OpenSceneGraph FOSS
X3D [20] Web 3D Consortium FOSS
VR Juggler [21] Iowa State University's

Virtual Reality Center
FOSS

e) Analysis and evaluation of each tool. Table 4 shows the results for the Open-

SceneGraph evaluation using an MCDM method. This method is the additive
value function and non-hierarchical weight assessment which is briefly described
below [10].

() ()iji

n

i
ij xvwxVMAX ∑

=

=
1

 (1)

where:

=ijx The value of criterion i for alternative j

Comparative Evaluation of Free/Open Source Software to Develop Virtual Reality... 273

() =iji xv A single criterion value function that converts the criterion into a measure of value or
worth. These are often scaled from 0 to 1, with more being better. In this method
these values were not scaled

=iw Weight for criterion i, representing its relative importance.

=n Number of criterions

Table 4. Evaluation results of OpenSceneGraph

Parameter ijx ()iji xv
iw ()ijii xvw

Drivers to ease hardware integration 1 1 2.0 2.0
Use of communication networks 2 2 1.5 3.0
Classes or functions library 4 4 2.0 8.0
Multiplatform and portability 2.5 2.5 2.0 5.0
Import and export 3D models and
scenes

3 3 2.0 6.0

Import and export animations 3 3 2.0 6.0
Geometries library 2 2 1.0 2.0
Optimization 5 5 2.0 10.0
Audio 1 1 1.5 1.5
Realism level 3 3 2.0 6.0
Animation 3 3 2.0 6.0
Renderization and visualization 4 4 2.0 8.0
Use of databases 2 2 1.5 3.0
Open Source and versions 4 4 1.0 4.0
Demos availability 3 3 1.0 3.0
Management aspects 3 3 2.0 6.0
Company profiles 1 1 1.5 1.5

 ()iji

n

i
i xvw∑

=1
 81.0

f) Obtaining a graph to compare tools. The results obtained for this group of tools

are shown in Figure 2. The results show the best commercial and FOSS toolkits
and graphic environments for programming and developing VR applications.
Figure 3, Figure 4 and Figure 5 show the evaluation for the other types of soft-
ware considered in this assessment, which were obtained by applying this meth-
odology.

274 Eduardo Islas Pérez, Ivonne Ávila Gutierrez, Ilse Leal Aulenbacher, et al.

M
et

aV
R

IR
R

Li
tc

h

C
ul

t 3
D

To
rq

ue

O
pe

n
In

ve
nt

or

H
or

iz
oN

 O
pe

n
G

L
P

er
fo

rm
er

P
an

da

Ja
va

 3
D

O
S

G

X
3D

V
R

 J
ug

gl
er

0.00

20.00

40.00

60.00

80.00

100.00

Total (T)

1 2 3 4 5 6 7 8 9 10 11 12

Fig. 2. Toolkits and graphic environments for programming and developing VR applications

3D
S

M
ax

M
ay

a

B
le

nd
er

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

1 2 3

Fig. 3. Tools to develop 3D models (3DS Max, Maya, Blender)

Comparative Evaluation of Free/Open Source Software to Develop Virtual Reality... 275

M
at

la
b

Si
m

ul
8 Sc

iL
ab

0.00

10.00

20.00

30.00

40.00

50.00

60.00

Total (T)

1 2 3

Fig. 4. Tools to develop mathematical models (Matlab, Simulink, SciLab)

B
S

C
on

ta
ct C

or
to

na

M
od

el
Pr

es
s

C
os

m
oP

la
ye

r

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

Total (T)

1 2 3 4

Fig. 5. Tools to visualize 3D environments (BS contact, Cortona, ModelPress, CosmoPlayer)

g) Documentation of results and conclusions. According to the results analysis
and evaluation, the best FOSS tools to develop VR applications can be identified.
These results can help make decisions about the best configuration to build a
platform considering the software tools evaluated in previous stages.

Based on the evaluation results, the best combination of FOSS to develop an inter-

active virtual environment is shown in Figure 6.

276 Eduardo Islas Pérez, Ivonne Ávila Gutierrez, Ilse Leal Aulenbacher, et al.

Tools for
developing 3D

models
Blender

Tools for
developing 3D

models
BlenderBlender

Toolkits and graphics
environments for
programming and

developing VR
applications

OpenSceneGraph

Toolkits and graphics
environments for
programming and

developing VR
applications

OpenSceneGraphOpenSceneGraph Tools for
developing

mathematical
models

SciLab

Tools for
developing

mathematical
models

SciLabSciLab

Tools for
visualizing 3D
environments

Model Press
Reader

Tools for
visualizing 3D
environments

ModelModel PressPress
ReaderReader

Fig. 6. FOSS tools recommended for developing an interactive virtual

environment

5. Development of a VR Application using FOSS

With the results we were able to know the best possible combination of software tools
to develop a virtual power system tutorial. In this section we provide some snapshots
to illustrate the way Blender was used to create 3D models and OpenSceneGraph to
program and develop the VR application [22].

5.1 Tool for 3D Modeling

We propose the use of Blender (v 2.44) to develop the 3D models for the tutorial de-
velopment. This FOSS tool runs on several platforms (Windows, MacOS, Linux,
FreeBSD, Irix and Solaris). Furthermore, it has very important animation features
such as: physics features and particles functions [23].

5.2 Tools for programming and developing VR applications

The use of OpenSceneGraph (v 1.9.8) is justified because it was the best VR FOSS
tool obtained from the evaluation. One of its most important features is that many of
its libraries were developed in C++ .Net. Additionally, it includes optimization meth-
ods such as: culling, different levels of detail, etc. Finally it presents many features for
rendering and visualization [19].

Comparative Evaluation of Free/Open Source Software to Develop Virtual Reality... 277

5.3 Developing a Virtual Power System Tutorial using FOSS

The virtual power system tutorial allows a better learning experience than just
reading or viewing photographs, because users can acquire knowledge using some of
the activities proposed by Moshel and Hughes to improve users learning: constructiv-
ist, constructionist and situated [24]. Constructivist learning involves the exploration
of prebuilt worlds and discovery, which is obtained with the exploration of the virtual
world. Furthermore the users learn by means of situated learning because the students
can have interaction with the virtual world using most of their senses to explore a
power system in an immersive environment that gives him/her the sense of actually
being there. This kind of VR applications with additional features can be further ap-
plied to personnel training in power plants, equipment maintenance, etc. without the
risk of accidents or equipment damage.

In the developed tutorial the user/student can interact with all the objects situated
in the virtual power system. The following figures show some power system tutorial
screenshots [22]. For example, figure 7 shows an exterior view of a power plant; this
particular application is focused on a fossil power plant where electricity is generated
using petroleum. Other kind of power plants could be modeled and integrated into the
system to learn about them. For example, the user can learn about differences between
geothermal, hydropower and nuclear power plants.

Fig. 7. A screenshot of the exterior view of a fossil power plant

In figure 8 a view of the transmission lines and towers is depicted, where the user
can learn about different voltage levels for transmission (400, 230 and 161 KVs) and
how the lines arrive at a power substation in order to reduce the level of voltage (34.5,
23, 13.8, 6.6, 4.16 y 2.4 kVs) for the distribution system.

278 Eduardo Islas Pérez, Ivonne Ávila Gutierrez, Ilse Leal Aulenbacher, et al.

Fig. 8. Transmission towers and a power substation screenshot

Figure 9 shows a narrow view of the electrical substation. In the tutorial, the user
can navigate and interact with the substation equipment to learn how voltage is re-
duced for its use in the distribution system and gain knowledge about different com-
ponents of a substation: switchgears, power transformers, surge protection, controls,
metering, etc.

Fig. 9. A narrow view of the electrical substation

Figure 10 shows a screenshot of a city. In this part, the user can learn about the dis-
tribution of electricity at low voltages (440, 220 and 127v) and how electricity is sup-
plied to final consumption centers such as: buildings, streets, houses, factories, etc.

Comparative Evaluation of Free/Open Source Software to Develop Virtual Reality... 279

Fig. 10. A screenshot of the use of electricity in consumption centers

6 Conclusions and Future Work

The methodology suggested in this paper helped to evaluate objectively, the charac-
teristics and functionality of commercial and open source software tools. A Multi Cri-
teria Decision Making methodology based on a criteria set and weight assignment
was useful to facilitate the selection of VR software tools. The Virtual Reality Group
reduced time and effort in the development process of virtual reality systems. In so
doing, we have obtained further information to improve and refine the methodology.

Future work includes, review of the evaluation methodology according to the fast
changes in technology and keep track of software updates in order to obtain a reliable
and updated evaluation. New criteria should be introduced to take into account factors
derived from our implementation experience. For instance, geometric format com-
patibility, reliable documentation, functionality, and development support.

Additionally, in the near future real physical behavior will be added to the objects
for simulation. We will develop mathematical models for behaviors using SciLab
which is the top rated FOSS tool according to the evaluation. After that, we will add
those mathematical models (for example gravity, inertia, weight, magnetism, etc.) to
the power plant tutorial in order to have a more realistic environment.

References

1. Wikibooks. FOSS A General Introduction/Why FOSS?,
http://en.wikibooks.org/wiki/FOSS_A_General_Introduction/Why_FOSS%3F#_ref-19,
last modified 13 May 2007.

2. Pescatore, J., Commentary: Another worm, more patches, CNet News.com; available from
http://news.com.com/2009-1001-273288.html?legacy=cnet&tag=nbs ; 20 September
2001.

280 Eduardo Islas Pérez, Ivonne Ávila Gutierrez, Ilse Leal Aulenbacher, et al.

3. Vaughan-Nichols, S. J., Can You Trust This Penguin?, ZDNet SmartPartner.
http://web.archive.org/web/20010606035231/http://www.zdnet.com/sp/stories/issue/0,453
7,2387282,00.html ; 1 November, 1999.

4. Miller B., Fuzz Testing of Application Reliability,
http://pages.cs.wisc.edu/~bart/fuzz/fuzz.html, Last modified: Jun 2 2006.

5. Wheeler D., Why Open Source Software / Free Software (OSS/FS, FLOSS, or FOSS)?
Look at the Numbers, http://www.dwheeler.com/oss_fs_why.html, Last modified: April
16, 2007.

6. Open GL. The Industry's Foundation for High Performance Graphics,
http://www.opengl.org/, visited on Jun 2007.

7. Open Inventor from Mercury, Overview, Open Inventor main features, 2002,
http://www.tgs.com/pro_div/oiv_overview.htm, visited on Jun 2007.

8. Pérez M., Zabre E. and Islas E., Prospectiva y ruta tecnológica para el uso de la tecnología
de realidad virtual en los procesos de la CFE, Instituto de Investigaciones Eléctricas,
Cuernavaca México, Technical Report IIE/GSI/022/2003, 2003.

9. Islas E., Zabre E. and Pérez M., Evaluación de herramientas de hardware y software para
el desarrollo de aplicaciones de realidad virtual; Boletín IIE, vol. 28, pp. 61-67, Apr-Jun
2004.

10. Islas E., Pérez M., Rodriguez G., Paredes I., Ávila I. and Mendoza M., E-learning Tools
Evaluation and Roadmap Development for an Electrical Utility, Journal of Theoretical and
Applied Electronic Commerce Research, Vol 2, pp. 63-75, Apr 2007.

11. Virtual Reality Scene Generator (VRSG) With Tracker Support, MetaVR,
http://www.metavr.com/products/vrsg/immersim.html, visited on Jun 2007.

12. Irrlicht, Features, http://irrlicht.sourceforge.net/features.html, visited on Jun 2007.
13. Cult3D, Welcome, http://www.cult3d.com/, visited on June 2007.
14. Torque, Torque Game Engine SDK, http://www.garagegames.com/products/1, visited on

June 2007.
15. DigiUtopikA, HorizoN Scene Graph, Portugal,

http://www.utopika.net/horizon/EN/horizonsg.html, visited on Jun 2007.
16. OpenGL Performer, Overview,

http://www.sgi.com/products/software/performer/overview.html, visited on Jun 2006
17. Panda3D, About Panda3D, What is Panda3D, http://www.panda3d.org/what.php, visited

on Jun 2007.
18. Sun Developer Network, Java 3D API, http://java.sun.com/products/java-media/3D/, vis-

ited on Jun 2007.
19. OpenSceneGraph, Homepage, http://www.openscenegraph.com/index.php, visited on Jun

2007.
20. Web 3D Consortium, X3D Developers, http://www.web3d.org/x3d/, visited on Jun 2007.
21. VR Juggler, Juggler Suite of Tools Project Overview, Iowa State University,

http://developer.vrjuggler.org/, visited on Jun 2007.
22. Avila I., Desarrollo de un prototipo de realidad virtual como tecnología de apoyo para ca-

pacitación de personal en CFE, Tesis de Licenciatura, Agosto 2005
23. Blender, Features and Gallery, http://www.blender.org/features-gallery/, visited on Jun

2007.
24. Moshel M and Hughes C., Virtual Environments as a Tool for Academic Learning, in K.

Stanney (Ed.), The Handbook of Virtual Environments Technology, Erlbaum, Mahwah,
NJ, 2002.

Comparative Evaluation of Free/Open Source Software to Develop Virtual Reality... 281

